Second Order Asymptotics for Matrix Models

نویسنده

  • E. MAUREL
چکیده

We study several-matrix models and show that when the potential is convex and a small perturbation of the Gaussian potential, the first order correction to the free energy can be expressed as a generating function for the enumeration of maps of genus one. In order to do that, we prove a central limit theorem for traces of words of the weakly interacting random matrices defined by these matrix models and show that the variance is a generating function for the number of planar maps with two vertices with prescribed colored edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Second-order Correlation Function of the Characteristic Polynomial of a Hermitian Wigner Matrix

We consider the asymptotics of the second-order correlation function of the characteristic polynomial of a random matrix. We show that the known result for a random matrix from the Gaussian Unitary Ensemble essentially continues to hold for a general Hermitian Wigner matrix. Our proofs rely on an explicit formula for the exponential generating function of the second-order correlation function o...

متن کامل

Nonperturbative Effects and the Large–Order Behavior of Matrix Models and Topological Strings

This work addresses nonperturbative effects in both matrix models and topological strings, and their relation with the large–order behavior of the 1/N expansion. We study instanton configurations in generic one–cut matrix models, obtaining explicit results for the one–instanton amplitude at both one and two loops. The holographic description of topological strings in terms of matrix models impl...

متن کامل

Rapidly Converging Phase Field Models via Second Order Asymptotics

We consider phase field models with the objective of approximating sharp interface models. By using second order asymptotics in the interface thickness parameter, ε, we develop models in which the order ε term is eliminated, suggesting more rapid convergence to the ε = 0 (sharp interface) limit. In addition we use non-smooth potentials with a non-zero gradient at the roots. These changes result...

متن کامل

On the Second-order Correlation Function of the Characteristic Polynomial of a Hermitian Wigner Matrix

We consider the asymptotics of the second-order correlation function of the characteristic polynomial of a random matrix. We show that the known result for a random matrix from the Gaussian Unitary Ensemble essentially continues to hold for a general Hermitian Wigner matrix. Our proofs rely on an explicit formula for the exponential generating function of the second-order correlation function o...

متن کامل

6 Ju n 20 08 LECTURES ON RANDOM MATRIX MODELS . THE RIEMANN - HILBERT APPROACH PAVEL

This is a review of the Riemann-Hilbert approach to the large N asymptotics in random matrix models and its applications. We discuss the following topics: random matrix models and orthogonal polynomials, the Riemann-Hilbert approach to the large N asymptotics of orthogonal polynomials and its applications to the problem of universality in random matrix models, the double scaling limits, the lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007